University of California, Berkeley Physics 105 Fall 2000 Section 2 (Strovink)

ASSIGNMENT 1

Reading:

105 Notes 1.1, 1.2, 1.3, 1.4, 1.5.

Hand & Finch 7.1, 7.2, 7.3, 7.4, and 8.7 (pp. 300-302 only).

1. A matrix A is called *orthogonal* if

$$A^{-1} = A^t ,$$

where

$$\left(A^t\right)_{ij} \equiv A_{ji} \ .$$

- (a) Prove that the product of two orthogonal matrices is also orthogonal.
- (b) Show that if A is a 3×3 orthogonal matrix, its three column vectors are mutually perpendicular and of unit length.
- **2.** Suppose that a vector \mathbf{x}' in the space axes is related to a vector \mathbf{x} in the body axes by

$$\mathbf{x}' = A\mathbf{x}$$
,

where A is a transformation matrix. Given a matrix F, find a matrix F', expressed in terms of F and A, such that

$$\mathbf{x}'^t F' \mathbf{x}' = \mathbf{x}^t F \mathbf{x} .$$

F and F' are said to be related by a similarity transformation.

3. Define the trace of a matrix F as

$$Tr(F) = F_{ij}\delta_{ij}$$
,

where, as usual, summation over repeated indices is implied.

- (a) Show that Tr(F) is the sum of the diagonal elements of F.
- (b) Prove that Tr(F) is invariant under any similarity transformation.

4.

(a) Use the Levi-Civita density ϵ_{ijk} to prove the bac cab rule

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$$
.

(b) Use the bac cab rule to show that

$$\mathbf{a} = \hat{\mathbf{n}}(\mathbf{a} \cdot \hat{\mathbf{n}}) + \hat{\mathbf{n}} \times (\mathbf{a} \times \hat{\mathbf{n}}) ,$$

where $\hat{\mathbf{n}}$ is any unit vector. What is the geometrical significance of each of the two terms in the expansion?

- **5.** Consider three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} .
- (a) Show that

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \epsilon_{ijk} u_i v_j w_k$$
,

where, as usual, summation is implied.

- (b) If **u**, **v**, and **w** emanate from a common point, show that $|\epsilon_{ijk}u_iv_jw_k|$ is the volume of the parallelepiped whose edges they determine.
- **6.** In a complex vector space, a matrix U is called *unitary* if

$$U^{-1} = U^{\dagger} ,$$

where

$$\left(U^{\dagger}\right)_{ij} \equiv U_{ji}^{*} \ .$$

Show than an infinitesimal unitary transformation T (one that is infinitesimally different from the unit matrix) can be written

$$T \approx I + iH$$
,

where I is the unit matrix and H is Hermitian, i.e.

$$H=H^{\dagger}$$
.

- 7. Show that \mathbf{v} , \mathbf{p} , and \mathbf{E} (velocity, momentum, and electric field) are ordinary ("polar") vectors, while $\boldsymbol{\omega}$, \mathbf{L} , and \mathbf{B} (angular velocity, angular momentum, and magnetic field) are pseudo ("axial") vectors.
- **8.** Find the transformation matrix Λ , such that

$$x_i' = \Lambda_{ij} x_j ,$$

which describes the following (passive) transformation: relative to the space (primed) axes, the body (unprimed) axes are rotated counterclockwise by an angle ξ about a unit vector $\hat{\mathbf{n}}'$ which has direction cosines n_1' , n_2' , and 0 with respect to the x_1' , x_2' , and x_3' (space) axes, respectively.